H=-16t^2+18.000

Simple and best practice solution for H=-16t^2+18.000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+18.000 equation:



=-16H^2+18.000
We move all terms to the left:
-(-16H^2+18.000)=0
We get rid of parentheses
16H^2-18.000=0
We add all the numbers together, and all the variables
16H^2-18=0
a = 16; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·16·(-18)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*16}=\frac{0-24\sqrt{2}}{32} =-\frac{24\sqrt{2}}{32} =-\frac{3\sqrt{2}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*16}=\frac{0+24\sqrt{2}}{32} =\frac{24\sqrt{2}}{32} =\frac{3\sqrt{2}}{4} $

See similar equations:

| 3(s+14)=7s-5 | | 37+f/12=57 | | 8x-3x+10=5x+10 | | 96=8(z+17) | | 43/2c=5 | | 6x-3=x-13 | | 2839480398209348029380492830948029384029384029348029384-m=1239148012938401 | | 1/4x-10=200 | | 3(x-2)+6=5(x4) | | 7x-(x-(5x-7))+3=24x-9(1+x) | | (k+8)/5=9 | | 4(h+7)=9 | | h(4+7)=9 | | d3-6=15 | | d3-6=16 | | g(20)=6(2X+7) | | 7x(5x+40)=0 | | 3.5x-2=3.5x+3.5 | | n=100+(-8)(n-1) | | (v+7)(v+6)=0 | | -1+2x=3x-4 | | 4=19x+ | | 3/8v=-18 | | 4x-11x-3=0 | | 3(b-5)=48 | | 4(8+5x6^2)=752 | | 7f+6=5f+17 | | 3/5x+24=x | | F(1/4)=24x+2x-4 | | A=m-7+(2.5-m) | | s/17=19 | | A=m-7+(2.5-m)= |

Equations solver categories